Climate Change Considerations in Federal Risk Assessments

ESAM September 20, 2023

FCSAP Climate Change Guidance Document Notes

- Written by ECCC to support FCSAP consultants, custodian etc. with considerations related to climate change adaptation.
- Designed to help implement activities in line with Canada's climate plan.
- As risk assessors are expected to address three questions for risk assessment during the 10 step process of the FCSAP Decision Making Framework:
- 1. What climate change hazards are relevant for the site?
- 2. What are the climate projections regarding those hazards?
- 3. How might those hazards influence contaminant distribution?

Federal Contaminated Sites Action Plan (FCSAP)

Integrating Climate Change Adaptation Considerations into Federal Contaminated Sites Management *Version 1.0*

Step 1 – Identify Site

• NA

Step 2 – Historical Review (Phase I)

• Identify climate change hazards (answers question 1)

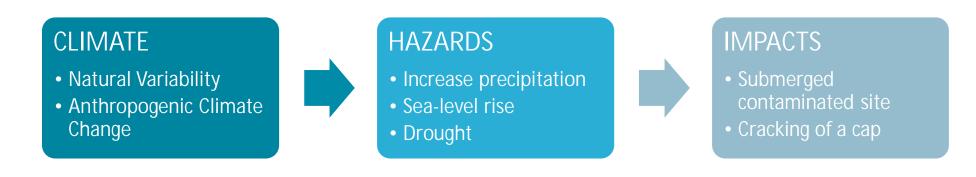
Steps 3-6 – Initial Testing (Phase II)/ Classify Site/ Testing Program (Phase III)/ Re-Classify Site

- Compile climate projections data (answers question 2)
- Create CSM(s) incorporating climate hazards (answers question 3)

Step 7 – Develop RM Strategy

- Refine CSM (optional)
- Integrate Climate Change into R/RM strategy

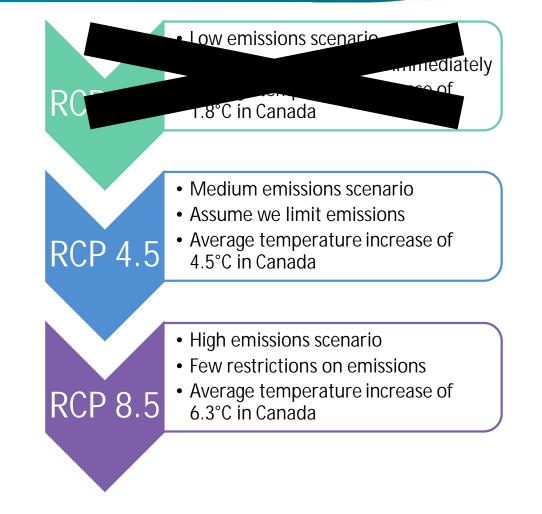
Steps 8-10 – Implement RM Strategy/ Confirmatory Sampling/ LTM


- Implement the chosen R/RM method
- Ensure risks have been addressed

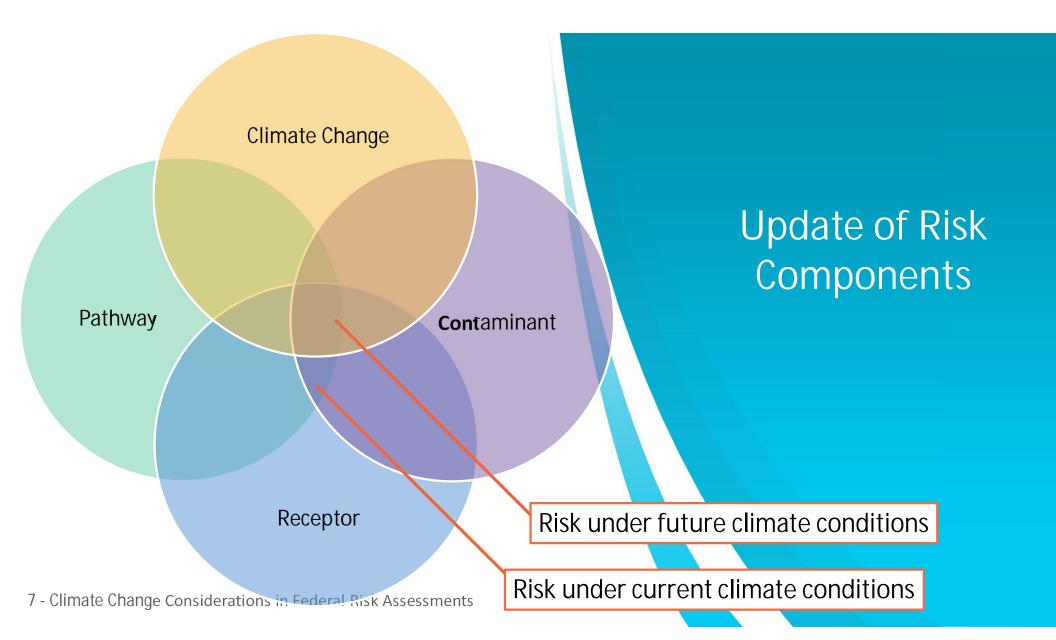
3 - Climate Change Considerations in Federal Risk Assessments

Adapting 10-step Decision Making Framework to Consider Climate Change

Climate Change Hazards and Impacts


- Climate change hazard is the event
- Climate change impact is the effect

- Predictions is used to discuss events within the next few months
- Projections is used to discuss events years in the future


Emission Scenarios

- The emission scenarios describe the potential future greenhouse gas emissions and concentration trends.
- Each scenario assumes different future: population growth, economic activity, energy intensity and socioeconomic data.
- Climate scenarios in the FCSAP document come from the Intergovernmental Panel on Climate Change (IPCC) climate models, and are based on Representative Concentration Pathway (RCP) scenarios.

Timeframes for Climate Projections

- Climate change hazards are considered in 30-year timeframes
 - Historical (1981-2010)
 - Near-term (2011-2040)
 - Mid-term (2041-2070)
 - Long-term (2071-2100)
- Prioritize assessing the worst case scenario (2100 under a high emission scenario).
- Some climate variables (e.g. freeze-thaw cycles) may not necessarily be at their worst in 2100 and may have a greater impact in the near term representing a higher priority for adaptation or remediation.

Identification of Climate Change Hazards

	Climate Change Hazards	Units	Historical Data 1981-2010	Projected Change						Summary Table			
Category				Near-term (2011-2040) ^a		Mid-term (2041-2070) ^a		Long-term (2071-2100) ^a		Change	by 2100	% Change by 2100	
				(2011- RCP 4.5	2040) ⁻ RCP 8.5	(2041- RCP 4.5	2070) ⁻ RCP 8.5	(2071- RCP 4.5	2100) ⁻ RCP 8.5	RCP 4.5	RCP 8.5	RCP 4.5	RCP 8.5
Changes in Fire Weather	Fire season Length b	days	220	18.5	21.9	26.7	22.1	34.8	27.5	34.8	27.5	16%	13%
Changes in Plant Growth Conditions	Number of Growing Degree Days (>0°C)	# of degree-days	3113.6	3444.5	3471	3716.3	3986.6	3886.8	4602.8	773.2	1489.2	25%	48%
	Number of Growing Degree Days (>5°C)	# of degree-days	1969.6	2234.3	2255.9	2431.9	2653.2	2605	3144.2	635.4	1174.6	32%	60%
	Number of Growing Degree Days (>10°C)	# of degree-days	1076.1	1278.3	1304	1438.8	1605.8	1572.9	2050.5	496.8	974.4	46%	91%
Changes in Rainfall and Snowfall Regime	Total Precipitation	mm	997.7	1031.2	1021.3	1061.6	1077.2	1072.4	1137.7	74.7	140	7%	14%
	Number of wet days (>1 mm)	# of days	152.2	152.3	153	153.5	153.5	153.8	153	1.6	0.8	1%	1%
	Number of wet days (>10 mm)	# of days	28.6	30.8	30.2	32.1	32.5	31.9	34.9	3.3	6.3	12%	22%
	Number of wet days (>20 mm)	# of days	6.2	7	7	8	8	8.1	9.2	1.9	3	31%	48%
	Maximum 1-Day Total Precipitation	mm	37.8	40.4	40.9	42.6	43.5	42.6	45.4	4.8	7.6	13%	20%
	Maximum 5-Day Total Precipitation	mm	66.9	71.8	72.6	75.6	76.7	74	80.3	7.1	13.4	11%	20%
Changes in Temperature	Mean Temperature (°C)	°C	6.2	7.5	7.7	8.6	9.4	9	11.6	2.8	5.4	45%	87%
	Maximum Mean Temperature (°C)	°C	11	12.4	12.6	13.6	14.3	14	16.3	3	5.3	27%	48%
	Minimum Mean Temperature (°C)	°C	1.3	2.6	2.8	3.6	4.6	4.1	6.9	2.8	5.6	215%	431%
Coastal Sea Level Rise	Relative sea-level change	cm	0	0	0	0	0	0	0	0	0	-	-
Declines in Ice and Snow Extent and Duration	Sea ice concentration	%	0	0	0	0	0	0	0	0	0	-	-
	Sea ice thickness	m	0	0	0	0	0	0	0	0	0	-	-
	Snow depth	m	0.054	0.049	0.043	0.03	0.026	0.029	0.014	-0.025	-0.04	-46%	-74%
	Maximum Number of Consecutive Dry Days	# of days	14.4	14.3	14.7	14.2	14.7	14.2	14.6	-0.2	0.2	-1%	1%

How Do Climate Hazards Affect Risk?

- May directly impact risk through by changing the Conceptual Site Model
 - Transport Mechanisms
 - Source Media
 - Exposure Pathways and Receptors
- May indirectly affect the risk by changing how receptors interact with the site
- Extreme weather events are more likely to drive changes to the conditions at a site

Source Media	Climate Hazards	Transport Mee	chanism	Exposure Pathway	COPC	Receptors
	Growing Degree Days, Increase in Temperature	¥egetatie Uptake	nc	Consumption of Vegetation	A84	164
Surface Soil				Soil/Dust Dermal Contact and Ingestion	A84	A624
L	Soil Moisuture, Number of Dry Days Surface Wind Speed,	• Vind Erosion	Atmospheric Dispersion	Inhalation of Particulates	A84	<i>NI</i> 94
			Atmospheric Dispersion	Inhalation of Outdoor Vapours	A84	7494
		Volatization (Organic Contaminants)	Enclosed Space Accumulation	Inhalation of Indoor Vapours	A84	A#24
		Leaching		Groundwater Potable Water Ingestion	Δ84	7694
Groundwater			Groundwater Transport	Groundwater 	A84	A64
				⇒ Ground⊮ater Dermal Contact	A84	<i>A64</i>
Surface Water				Surface Water/Sediment Incidental Ingestion	A84	A694
Sediment				Surface Water/Sediment Dermal Contact	A84	A64
Source						Receptor
Complete Exposure Path w ay	Incomple Exposure Pa					

Limitations / Considerations

- Most data are based on gridded data which may over/underestimate the changes at a specific site
- Contaminated sites with their own microclimates or are at a different elevation than the rest of the grid cell may not be accurately represented

Climate stations which collect the data are not always near our site

Source: ClimateData.ca

Limitations / Considerations

- We don't know what the future conditions at the site will be... ...so we should avoid making very precise predictions assuming we do.
- However, we can identify trends in the projected data to help identify what hazards will likely cause the most change.

Climate Resources

- Canadian Centre for Climate Services (CCCS) Climate Data Portals
- Climate Atlas of Canada
- ClimateData.ca
- The Power Analytics and Visualization for Climate Science
- Reports
 - Canada's Changing Climate Report (Bush and Lemmen, 2019)
 - National Issues Report (Warren and Lulham, 2021)
- Dillon has it's own set of climate tools developed by our climate team and is continuing to develop them